Предлагаем песок строительный в Москве. Своя перевалочная база!

Лучший греющий кабель саморегулирующийся

Предлагаем купить щебень в Москве с доставкой от 30 минут. Своя перевалочная база!

Описание саморегулирующегося нагревательного кабеля

Саморегулирующийся нагревательный кабель идеально подходит для подогрева, защиты от замерзания и поддержания заданной температуры трубопроводов, резервуаров, кровли, водостоков. Использование саморегулирующегося нагревательного кабеля позволяет не только упростить расчет и проектирование, но и значительно увеличить надежность системы и добиться существенной экономии электроэнергии. Внешняя оболочка ( фторопласт) нагревательных кабелей допускает их использование даже в условиях возможного воздействия коррозионных химических растворов и паров. Главной особенностью саморегулирующегося нагревательного кабеля является возможность его применения кусками большой длины.

  1. Медные токоведущие провода большого сечения
  2. Саморегулирующийся токопроводящий материал (матрица)
  3. Полиолефиновая изоляция
  4. Оплетка из луженой меди для дополнительной защиты
  5. Наружная оболочка из модифицированного полиолефина, устойчивая к УФ излучению.

Основными характеристиками саморегулирующегося нагревательного кабеля являются линейная тепловая мощность, напряжение питания, минимальная и максимальная длина нагревательной секции при заданном напряжении, рабочая и максимально допустимая температуры.

Принцип действия саморегулирующегося нагревательного кабеля:

Саморегулирующийся нагревательный кабель имеет две параллельные токопроводящие жилы. Токопроводящие жилы окружены саморегулирующейся полупроводниковой матрицей, в которой и происходит выделение тепла. Эффект саморегулирования заключается в автоматическом увеличении тепловой мощности кабеля при снижении температуры окружающей среды и наоборот. Этот эффект основан на применении в нагревательном кабеле специальной полупроводниковой матрицы, меняющей свои проводящие свойства в зависимости от температуры — с уменьшением температуры уменьшается сопротивление матрицы и следовательно увеличивается протекающий ток, что приводит к увеличению выделяемой тепловой мощности и нагреву поверхности. При возростании температуры на данном участке происходит обратный процесс. Причем каждый участок саморегулирующегося нагревательного кабеля изменяет свои свойства в зависимости только от конкретной температуры на данном участке, независимо от других участков кабеля. Таким образом саморегулирующийся нагревательный кабель не перегревается и не перегорает даже при наложении витков кабеля друг на друга. Благодаря эффекту саморегуляции значительно увеличивается надежность системы, достигается увеличение КПД и существенная экономия электроэнергии.

Особенности саморегулирующегося нагревательного кабеля:

  • Высокая надежность.
  • Экономия электроэнергии, так как мощность кабеля меняется в зависимости от температуры.
  • Удобство и лёгкость монтажа.
  • Независимость погонной мощности от длины контура.
  • Не перегревается и не перегорает.
  • Долгий срок службы.

Безопасность саморегулирующегося нагревательного кабеля:

Системы, основанные на применении саморегулирующихся нагревательных кабелей являются наиболее безопасными и простыми в монтаже и эксплуатации. Они являются полностью автоматическими и не требуют никакого специального обслуживания.

Особенности монтажа саморегулирующегося нагревательного кабеля:

Монтаж саморегулирующихся нагревательных кабелей прост и не требует специального инструмента. Подключение нагревательного кабеля к электропитанию или соединении частей кабеля между собой осуществляется при помощи комплектов соединительных муфт. Саморегулирующийся кабель при монтаже может быть разрезан на участки любой длинны без остатка, что значительно упрощает проектирование систем обогрева. Для экономии электроэнергии или в случаях, когда необходим контроль температуры — возможно применение приборов управления — термостатов.

Системы на основе саморегулирующегося нагревательного кабеля надежны, долговечны, практичны и экономически выгодны.

ООО «СиБ Контролс»

В настоящее время для обогрева технологических объектов нефтегазовой отрасли широкое распространение получили системы промышленного электрообогрева. В реализации и последующей эксплуатации данных систем участвуют множество специалистов различных специальностей, но в технической литературе данный вопрос освещен, мягко сказать, недостаточно.

В данной статье мы не будем пытаться охватить все типы нагревательных элементов, применяемых для построения систем электрообогрева, а остановимся на особенностях применения саморегулирующихся греющих кабелей, как наиболее быстроразвивающихся и популярных в настоящее время источников тепловой энергии. Вся имеющаяся в наличии информация о саморегулирующихся греющих кабелях зачастую получается специалистами проектных и эксплуатирующих организаций только от производителей данного рода кабелей, которые в один голос говорят: «Наша продукция отличного качества и практически лишена недостатков, за исключением, возможно, немного высокой стоимости по отношению к другим типам нагревательных элементов!». Попытаемся разобраться, так ли это на самом деле, и какие недостатки присущи саморегулирующимся греющим кабелям.

Учитывая важность работы систем электрообогрева промышленных объектов в общей инфраструктуре предприятия, вопрос понимания основных технических особенностей применения и эксплуатации саморегулирующихся греющих кабелей позволит ответственным специалистам эксплуатации и проектных организаций:

  • Получить в результате проектирования и строительства технически обоснованную, безопасную и бесперебойно работающую систему электрообогрева.
  • Снизить затраты на покупку кабельной и вспомогательной продукции.
  • Снизить затраты на последующую эксплуатацию системы.
  • Снизить затраты на электроэнергию в рамках программы энергосбережения объекта.

Особенности конструкции и технические характеристики саморегулирующихся греющих кабелей.

Важнейшим шагом в развитии систем электрообогрева стало изобретение и начало производства нагревательных кабелей на основе эффекта саморегуляции. Это изобретение было сделано в ходе изучения свойств проводящих угленаполненных пластмасс. Выделяемые мощности таких кабелей существенно ниже, чем у резистивных лент, но благодаря появлению эффективных теплоизоляционных материалов, данной мощности достаточно для решения широкого спектра вопросов обогрева технологических объектов.

На данной диаграмме схематически показана область применений саморегулирующихся кабелей в зависимости от температуры объекта нагрева и длины кабельной линии.

В связи с тем, что основные преимущества и недостатки саморегулирующихся греющих кабелей вытекают из их конструктивных особенностей, рассмотрим данный вопрос более подробно.

По схеме тепловыделения данные кабели относятся к следующему типу – саморегулирующиеся кабели (ленты) с тепловыделением в проводящей полимерной матрице или проводящих пластмассовых элементах.

Саморегулирующиеся кабели имеют, как правило, овальную форму и следующую типовую конструкцию: две параллельные токопроводящие жилы, покрытые слоем полупроводящего, наполненного углеродом полимера, так называемой матрицей. Поверх матрицы укладываются слои электрической изоляции, экранирующая оплетка и защитная оболочка.

Полупроводящую матрицу можно условно представить в виде очень большого числа сопротивлений, подключенных параллельно токопроводящим жилам. При подаче напряжения на токопроводящие жилы в полупроводящей матрице возникает ток, вызывающий выделение тепла. За счет выделения тепла материал матрицы расширяется и контактные связи между отдельными частицами углерода нарушаются. Сопротивление матрицы растет и ток уменьшается. Через некоторое время ток и температура стабилизируются. Сопротивление матрицы, приведенное к одному метру кабеля, обычно составляет несколько сот Ом.

Благодаря данным свойствам саморегулирующиеся нагревательные кабели обладают следующими уникальными свойствами:

  • Могут использоваться при подключении на полное напряжение любыми длинами от минимальных (десятки сантиметров), до предельно допустимых. Данное свойство особенно ценно, когда заранее не известна длина обогреваемого трубопровода.
  • Способны изменять свое тепловыделение локально. Если на обогреваемом объекте в какой-либо зоне температура повышается, то тепловыделение кабеля в этой зоне падает. Данное свойство значительно повышает безопасность системы обогрева и упрощает процесс монтажа саморегулирующихся кабелей, поскольку допускается сближение и пересечение кабелей друг с другом.

Данные положительные характеристики рекламируют практически все производители и поставщики саморегулирующихся кабелей. Попытаемся, однако, разобраться в определенных недостатках и особенностях данной продукции. Для этого рассмотрим основные технические характеристики саморегулирующихся кабелей, их связь между собой, влияние на надежность и на другие немаловажные характеристики проекта системы электрообогрева.

Техническая характеристика: Напряжение питания, Вольт.

Некоторые производители саморегулирующихся кабелей просто указывают диапазон напряжения питания, к примеру: 220 – 275 Вольт., без дополнительных комментариев и таблицы коэффициентов перерасчета выделяемой мощности в зависимости от напряжения питания. Дело в том, что номинальная мощность саморегулирующихся кабелей, указанная в документации и рекламных проспектах производителей, нормируется при напряжении питания не 220, а 230 или 240 Вольт. Данное напряжение нужно уточнять у производителя.

Момент первый. Отклонения питающего напряжения должны учитываться для оценки мощности, выделяемой саморегулирующимся кабелем. Производители предлагают специальные таблицы с коэффициентами для пересчета выделяемой мощности в зависимости от отклонения напряжения питания от величины 230/240 Вольт. К примеру, для некоторых моделей кабелей данный коэффициент равен 0,9. Соответственно, при напряжении питания 220 Вольт погонная мощность данного кабеля снизится на 10%. Этот факт нужно обязательно учитывать в момент проектирования.

Момент второй. Для каждой марки саморегулирующего кабеля установлены ограничения по величине питающего напряжения. К примеру, для кабелей, рассчитанных на напряжение 230 Вольт, недопустимо питающее напряжение, превышающее 275 Вольт. Повышение питающего напряжения (например из за ошибок монтажа иногда на нагревательную секцию подается напряжение 380 Вольт) вызывает усиленное выделение тепла в матрице и ее скорую деградацию и полное прекращение нагрева, т. е. выход кабеля из строя.

Техническая характеристика: Номинальная мощность погонного метра кабеля, Вт/м при указанной температуре в градусах Цельсия.

В связи с тем, что это основная техническая характеристика данного изделия, остановимся на ней наиболее подробно.

Существенная зависимость мощности тепловыделения от температуры диктует определенные правила нормирования и измерения тепловой мощности саморегулирующихся кабелей. Мощность саморегулирующейся ленты нормируется при следующих стандартных условиях – отрезок измеряемого кабеля устанавливается на металлической трубе диаметром не менее 50 мм. так, чтобы обеспечить хороший тепловой контакт. По трубе прокачивается охлаждающая жидкость с температурой 10 ± 0,5°С. (в отдельных случаях измерения проводят при 5°С). Труба с кабелем закрывается тепловой изоляцией толщиной не менее 20 мм. Номинальная мощность саморегулирующихся кабелей, указанная в каталогах производителей – это мощность, измеренная в стандартных условиях. Для снятия зависимости мощности от температуры необходимо задавать и поддерживать соответствующую температуру трубопровода.

Зависимость мощности от температуры снимается на подобной установке не менее, чем при трех значениях температуры трубопровода. Кривые зависимости мощности конкретных марок саморегулирующихся кабелей от температуры, приводимые в каталогах фирм-поставщиков, показывают зависимости мощности тепловыделения от температуры трубы, а не от температуры кабеля. Это весьма существенный момент, который следует учитывать при применении саморегулирующихся кабелей. На следующем рисунке показана подобная зависимость для кабеля марки BTV2-CT фирмы Tyco — Raychem.

При других условиях, например при плохом контакте с обогреваемым объектом, выделяемая саморегулирующимся кабелем мощность не будет соответствовать справочной кривой. Если саморегулирующийся кабель, свободно подвесить в воздухе, то за счет ухудшения условий теплоотдачи измеренная мощность будет примерно на 30% меньше нормируемой.

Вывод: Важно обеспечить должный контроль над проведением монтажных работ на объекте для обеспечения необходимого качества работ. В противном случае система электрообогрева на основе саморегулирующихся кабелях будет функционировать с падением мощности по отношению к проектной и данный факт приведет к существенному перерасходу электроэнергии.

Техническая характеристика: Величина удельного пускового тока, Ампер.

Саморегулирующиеся кабели помимо номинальной мощности и зависимости мощности от температуры трубы характеризуются величиной удельного пускового тока в зависимости от температуры в момент включения. Это такое значение тока, приведенное к одному метру кабеля, которое имеет место в момент включения питания. Пусковой ток в основном спадает в течение первой минуты, но полная стабилизация занимает примерно 5 минут. Максимальная абсолютная величина пускового тока определяется длиной нагревательного кабеля, температурой объекта и конструкцией конкретного нагревательного кабеля.

Преимущественная область применения саморегулирующихся кабелей – обогрев трубопроводов и резервуаров, эксплуатируемых при отрицательных температурах окружающего воздуха. Как правило, запуск систем выполняется, когда и трубы и тепловая изоляция холодные. Для целей проектирования и расчета характеристик системы обогрева в момент пуска и эксплуатации требуется знать свойства саморегулирующихся кабелей при низких температурах. Исходя из конструкции саморегулирующихся кабелей, можно сделать вывод, что чем ниже температура, тем ниже сопротивление нагревательной матрицы кабеля и тем выше пусковой/стартовый ток.

В связи с тем, что технические характеристики автоматов защиты от короткого замыкания, перегрузок по току, защиты от утечек на землю, сечение питающих кабелей, а следовательно и их цена напрямую зависят от величины пускового тока, проектным организациям и конечным заказчикам следует обращать на данный момент пристальное внимание.

Ниже по тексту представлены результаты исследований трех марок саморегулирующихся кабелей в диапазоне от +10 до — 40°С. Кабель 23ФСЛе2-СТ преимущественно устанавливается на трубопроводах диаметром до 100 мм. Кабель 31ФСР2-СТ находит применение при обогреве более крупных трубопроводов. Оба кабеля устойчиво работают под напряжением при температуре не более 65°С. В отключенном состоянии способны выдерживать до 85°С. Среднетемпературный кабель 55ФСС2-СФ имеет теплостойкую матрицу, а изоляция и оболочка выполнены из фторполимеров.

Краткие характеристики исследованных кабелей приведена в следующей таблице.

Исследования зависимости характеристик от температуры были выполнены в климатической камере. При этом была обеспечена такая циркуляция воздуха в камере и остальные условия эксперимента, при которых значения мощности, измеренные в камере, были близки к результатам, полученным на стандартизованной установке. Измерения проводились при температурах: +10; +3; 0; -10; -20; -30; -40°С. Каждая марка кабеля была представлена тремя образцами. По достижении заданной температуры образец выдерживался в камере в течение 1 часа. Затем на образец подавалось номинальное напряжение. Фиксировался стартовый ток и его снижение по мере разогрева кабеля. Типовой вид таблицы измеренных значений показан ниже.

На следующем рисунке показаны графики снижения пускового тока кабеля 23ФСЛе2-СТ построенные по данным данной таблицы. С понижением температуры растет как пусковой, так и установившийся ток. Наблюдается также незначительный рост коэффициента пускового тока.

Помимо установившихся значений мощности для всех кабелей определены коэффициенты пусковых токов, знание которых поможет при проектировании систем обогрева, использующих саморегулирующиеся кабели. Средние значения пусковых и установившихся токов и значения Кпт (коэффициента пускового тока) приведены в следующей таблице.

Основные выводы по результатам данных исследований:

  • Чем ниже температура, тем выше пусковой ток.
  • Для некоторых типов кабеля пусковой ток может быть в шесть с лишним раз выше установившегося тока.
  • С понижением температуры растет значение установившегося тока.

Из прилагаемой таблицы можно сделать вывод, что пусковой ток при -20° Цельсия намного превосходит рабочий ток при поддерживаемой температуре. Дело в том, что саморегулирующиеся кабели характеризуются большими коэффициентами пусковых токов. Для нормальной работы подсистемы питания должны использоваться автоматы серии С, а длина секции не должна быть больше допустимой для заданной температуры холодного пуска. Соответствующие рекомендации приводятся в технических описаниях саморегулирующихся кабелей.

Для снижения значений пусковых токов саморегулирующихся кабелей и одновременного уменьшения номиналов автоматических выключателей и сечений питающих силовых кабелей рекомендуется использовать специализированные устройства управления системой электрообогрева.

Техническая характеристика: Сечение токоведущей жилы, миллиметров квадратных.

От величины сечения токоведущей жилы саморегулирующего кабеля напрямую зависит длина нагревательной секции. Применение кабеля с большим сечением токоведущей жилы позволит увеличить длину нагревательной секции, сократить количество нагревательных секций для обогрева трубопроводов значительной длины и, соответственно, сократить количество вспомогательных электроустановочных изделий (соединительных коробок, питающих кабелей и. т.), т. о. сэкономить на материалах и монтажных работах.

Техническая характеристика: Максимальная рабочая температура, градусов Цельсия.

Не нужно путать данную температуру с температурой нагрева кабеля в процессе соморегуляции. Дело в том, что саморегулирующий кабель:

  • Во-первых, нагревается неравномерно по всей длине в зависимости от неравномерности передачи тепловой энергии обогреваемой поверхности;
  • Во-вторых, распределение температуры в самой полупроводящей матрице происходит весьма неравномерно. Диаграмма данного процесса представлена на следующем рисунке.

Соответственно, максимальная рабочая температура саморегулирующего кабеля – это максимально возможная температура именно технологического процесса, а иначе обогреваемой поверхности, превышение которой потребитель не должен допускать в процессе эксплуатации. Если, к примеру, максимальная рабочая температура кабеля составляет 200 °C, то конструкция подсистемы управления обогревом должна исключить превышение указанной температуры обогреваемой поверхности, когда кабель находится во включенном состоянии. В выключенном состоянии кабель может подвергаться кратковременному воздействию температуры 250 °C. Однако это воздействие в сумме не должно превышать 1 000 часов.

Превышение указанных значений приведет к быстрой деградации полупроводящей матрицы и частичному (иногда и полному) снижению тепловыделяющей способности кабеля, соответственно неэффективной работе всей системы электрообогрева и перерасходу электроэнергии.

Техническая характеристика: Минимальная температура окружающей среды, градусов Цельсия.

Минимальная температура окружающей среды – это минимальная температура, при которой еще допускается эксплуатация изделия. Рассматривая данную техническую характеристику саморегулирующего кабеля можно заметить весьма любопытный момент. В технической документации, а порою и в сертификатах соответствия, данная температура производителями не указывается. Либо указывается -40 °C, что для проектов, расположенных в Сибири и районах крайнего севера совершенно не достаточно. У небольшого числа производителей минимальная температура окружающей среды составляет требуемую -55/-60 °C, но таблицы расчета максимальной длины обогреваемого контура составлены на минимальную температуру -40 °C. На этот момент следует обратить особое внимание при выборе производителя, модели саморегулирующегося греющего кабеля и подсистемы управления.

Техническая характеристика: Окно мощности, т. е. отклонение выделяемой мощности от номинального значения, выраженное в %.

Саморегулирующиеся кабели производятся с некоторым отклонением по мощности от номинального значения. Данный разброс может составлять до +/-30% от номинального значения. По понятным причинам многие производители не указывают данную техническую характеристику в своей документации. Для потребителя применение кабеля с широким окном мощности будет означать либо перерасход греющего кабеля на стадии проектирования, либо перерасход электроэнергии на стадии эксплуатации системы электрообогрева.

Влияние условий эксплуатации на стабильность саморегулирующихся кабелей.

Герметизация кабеля в процессе монтажа.

Как показали испытания, саморегулирующая матрица чувствительна к наличию влаги и к циклам «нагрев-охлаждение». При этих испытаниях образец кабеля 23ФСЛе2-СТ длиной 3 метра с одним не заделанным концом погружался в воду, а затем замораживался в камере холода до температуры -5 °C. Потеря мощности после каждого цикла замораживания составила 10%. Данный эксперимент показал насколько важно обеспечить надежную герметизацию концов саморегулирующей секции.

Влияние теплопроводности обогреваемых объектов на срок эксплуатации саморегулирующихся кабелей.

Результаты исследований показывают, что низкая теплопроводность пластикового трубопровода при обогреве саморегулирующимися кабелями весьма значительно влияет на тепловой режим нагревательного кабеля и самого трубопровода. При постоянной прокачке воды с температурой 8 °С. температура матрицы нагревательного кабеля, установленного на пластиковом трубопроводе, на 12,6 °С. превышает температуру матрицы такого же кабеля, обогревающего стальной трубопровод.

В случае остановки потока воды кабель, установленный на стальном трубопроводе, надежно обеспечивает поддержание требуемой температуры. Температура матрицы несколько повышается за счет ухудшившейся теплоотдачи, при этом наличие жидкости в трубопроводе или ее отсутствие практически не ощущается. Проведенные исследования показывают, что при построении систем обогрева пластиковых трубопроводов особое внимание следует уделить технологическому циклу функционирования трубопроводов. Если ожидаются длительные остановки прокачки жидкости, то необходимо провести расчет возможной потери мощности саморегулирующегося кабеля и принять меры, обеспечивающие улучшение теплопередачи от кабеля к трубе, например, за счет использования обмотки металлической фольгой и применения теплопроводящих паст, а возможно, предусмотреть установку более мощного кабеля. В период остановки прокачки жидкости по пластиковому трубопроводу должен быть усилен контроль за температурным режимом. Данные мероприятия следует проводить для снижения температуры рабочей матрицы кабеля и ее преждевременной деградации.

Что означает деградация греющей матрицы кабеля? Деградация означает снижение тепловыделяющей способности (падение мощности) греющего кабеля. Кабель с дефектами греющей матрицы может частично (или полностью) терять тепловыделяющие свойства на некоторых участках кабеля, т.е некоторые участки кабеля будут выделять тепло (нагреваться), а некоторые нет. В таком случае система обогрева будет работать с падением проектной мощности, что может привести, в худшем случае, либо к перемерзанию обогреваемого оборудования, либо к существенному перерасходу электроэнергии.

Надежность кабельных нагревательных элементов.

В основном, на вопрос о надежности саморегулирующих греющих кабелях продавцы и производители заявляют следующее:

  • Наша продукция производится на самом современном оборудовании, при строгом контроле качества.
  • Некоторые из наших кабелей эксплуатируются без замечаний десятки лет на тех-то и тех-то объектах.

Достаточно ли для потребителя данной информации?

Рассмотрим более подробно вопросы обеспечения надежности кабельных нагревательных элементов. Надежность кабелей определяется их способностью выполнять свои функции в заданных условиях в течение заданного времени. Основная задача конкретного кабельного изделия определяется его назначением и конструкцией. Нагревательные кабели предназначены для выделения теплового потока заданной удельной мощности. Потеря работоспособности у кабелей наступает при каких-либо отказах. Типичными видами отказов нагревательных кабелей являются: обрыв токопроводящих элементов, нарушение целостности изоляции и защитных покровов, возрастание сопротивления проводников выше предельно допустимых норм, деградация греющий полупроводящей матрицы и соответствующее снижение тепловыделяющей способности.

Принимая во внимание, что снижение тепловыделяющей способности — это основополагающий дефект нагревательного кабеля, влияющий на работу системы электрообогрева, рассмотрим следующий показатель надежности нагревательных кабелей — минимальная наработка.

В приложении к кабелям это понятие подразумевает период времени, в течение которого в кабельном изделии не должно быть отказов. При этом вероятность случайных отказов крайне мала и они вызваны конструкторско-технологическими недоработками или нарушениями условий эксплуатации. Показатель минимальной наработки рекомендуется устанавливать в виде одного из значений стандартизованного ряда: минимально 500 часов и максимально более 150 000 часов. Допускается устанавливать наработку в виде числа циклов — например, циклов включения – выключения.

Для саморегулирующегося кабеля число циклов включения – выключения весьма важный фактор, определяющий старение полупроводящей греющий матрицы.

При разработке новых кабельных изделий для оценки их надежности принято проводить прямые испытания на надежность с целью подтверждения минимальной наработки длительностью 1000 часов. Отобранные для испытаний образцы подвергают воздействию повторяющихся испытательных циклов. Последовательность воздействий в каждом испытательном цикле и количество циклов должны быть определены в программе испытаний. Количество испытываемых образцов, необходимое для подтверждения вероятности безотказной работы изделия на уровне 0,9 при достоверности 0,9 составляет 22 образца. При такой постановке испытаний предполагаемое число отказов (так называемое приемочное число) должно быть равно нулю. При допущении одного отказа требуется выборку увеличить до 37 образцов. Испытания для получения большей вероятности безотказной работы требуют значительного увеличения числа образцов, а следовательно больших затрат. Подтверждение наработки большей, чем 1000 часов, существенно увеличивает трудоемкость испытаний.

Для подтверждения наработки 1000 часов рекомендуется запрашивать у производителя нагревательных кабелей результаты проведения испытаний для подтверждения указанного выше показателя надежности.

Обманчивая иллюзия абсолютной надежности кабельных изделий снижает внимание потребителей к таким вопросам как облегчение режимов работы и постоянный мониторинг основных параметров в процессе ведения технологического процесса. Основная доля отказов кабельных изделий возникает при эксплуатации изделий в недопустимых режимах, из-за недопустимых воздействий, имевших место при монтаже, либо при наличии производственных дефектов. Технологическая надежность, определяемая однородностью характеристик изделия и стабильностью технологических процессов, не учитывает динамики изменения характеристик нагревательных элементов и других составляющих систем обогрева с течением времени. При достаточно интенсивном нагреве кабелей и одновременном воздействии внешней среды (температура, влага, вибрации и удары и др.) происходит старение полимерных покрытий, окисляются проводники. Периодически следующие циклы нагрева и охлаждения в процессе эксплуатации могут вызывать нежелательные механические напряжения и деградацию нагревательной матрицы в нагревательных саморегулирующихся кабелях.

Подсистемы контроля и управления.

Практически все системы электрообогрева, кроме самых примитивных, оснащаются набором датчиков температуры, тока, напряжения, управляющими приборами и системами сбора информации. Назначение подсистем управления (далее по тексту системы управления) – не только поддерживать заданный алгоритм работы системы, но и предоставлять обслуживающему персоналу информацию о ее функционировании.

Рассматривая имеющиеся в настоящее время системы управления электрообогревном, можно прийти к парадоксальному выводу: предприятия-заказчики используют в качестве систем управления технологическим процессом самые современные системы от ведущих производителей, а в качестве систем управления электрообогревом используются самые примитивные системы на основе простейших капиллярных термостатов. Однако, в случае взрывозащищенного исполнения, капиллярные термостаты предлагаются производителями за весьма существенные деньги.

Рассмотрим типичную схему управления цепью нагрева на основе саморегулирующегося греющего кабеля с применением капиллярного термостата.

Элементы структурной схемы:

Предлагаем купить щебень гравийный в Москве с доставкой от 30 минут. Своя перевалочная база!

  1. Линия электропитания.
  2. Автоматический выключатель (защита от перегрузок по току и тока короткого замыкания).
  3. Устройство защитного отключения/устройство дифференциального тока (УЗО).
  4. Термостат.
  5. Чувствительный элемент термостата/датчик температуры.
  6. Кабель питания нагревательной секции.
  7. Соединительная коробка.
  8. Нагревательный кабель.
  9. Обогреваемый трубопровод.

Недостатки системы управления электрообогревом на основе саморегулирующихся греющих кабелей с применением капиллярных термостатов:

  • Необходимость установки дополнительных дорогостоящих устройств УЗО.
  • Отсутствие мониторинга и выявления тенденций роста величины тока утечки на землю в процессе эксплуатации. Факт выхода из строя нагревательного кабеля в зимний период существенно усложнит проведение ремонтных работ и вызовет сбои в работе технологического оборудования.
  • Отсутствие контроля перегрева обогреваемой технологической поверхности в процессе ведения технологического процесса при котором температура может превысить максимальное значение для данного типа саморегурирующегося нагревательного кабеля, что приведет к преждевременному выходу кабеля из строя.
  • Отсутствие контроля недогрева обогреваемой поверхности в процессе ведения технологического процесса при котором температура может снизиться ниже допустимого значения для данного технологического процесса. Не нужно путать данную температуру с температурой включения нагревательного элемента.
  • Отсутствие контроля минимального значения тока потребления нагревательной секции.
  • Отсутствие контроля максимального значения тока потребления нагревательной секции.
  • Отсутствие функции ограничения пускового тока, т.е. ступенчатой подачи питающего напряжения на саморегулирующийся кабель, находящийся при низкой температуре для ограничения величины пускового тока.
  • Отсутствие функции мониторинга основных параметров работы нагревательного кабеля в период летнего отключения системы электрообогрева.
  • Отсутствие функции мониторинга затрат электроэнергии на работу системы электрообогрева для определения эффективности ее работы в рамках программы энергосбережения предприятия.

Системы управления электрообогревом на основе саморегулирующегося греющего кабеля с применением капиллярных термостатов могут применяться на неответственных участках с небольшим количеством нагревательных секций и малопригодны для контроля и мониторинга электрообогрева основных технологических объектов нефтегазовой отрасли.

Учитывая вышеизложенную информацию об особенностях конструкции и эксплуатации саморегулирующихся греющих кабелей, можно сделать ввод о необходимости применения в качестве систем управления электрообогревом специализированных систем. Поскольку затраты на устранение неполадок, ремонт и замену нагревательных секций, издержки от простоя увеличиваются с размером промышленного объекта, вышеуказанные системы могут быть рекомендованы к применению в процессе нового строительства или могут быть добавлены в течении последующей эксплуатации.

В качестве примера рассмотрим структурную схему управления системой электрообогрева на основе саморегулирующегося греющего кабеля с применением специализированных контроллеров.

Элементы структурной схемы:

  1. Линия электропитания.
  2. Автоматический выключатель (защита от перегрузок по току и тока короткого замыкания).
  3. Контроллер, рассчитанный для управления 10-ю цепями нагрева.
  4. Датчики температуры.
  5. Кабель питания нагревательной секции.
  6. Соединительная коробка.
  7. Нагревательный кабель.
  8. Обогреваемый трубопровод.
  9. Интерфейсный модуль.

10. Распределенная система управления технологическим процессом (РСУ).

11. Автоматизированное рабочее место (АРМ).

Преимущества системы управления электрообогревом с применением специализированных контроллеров:

  • Отсутствие необходимости в установки дополнительных дорогостоящих устройств УЗО. Дело в том, что специализированные контроллеры управления работой систем обогрева имеют в своем составе интегрированные цепи контроля дифференциального тока и позволяют производить отключение цепи питания линии нагревательной секции при превышении допустимого значения тока утечки на землю, например 30 мА. При средней стоимости блоков УЗО на 40 Ампер в размере 10 000 рублей выгода от применения специализированных котроллеров в следствии экономии средств только на покупку УЗО, при числе каналов обогрева 30 и более, составит весьма существенную цифру.
  • Возможность мониторинга и выявления тенденций роста величины тока утечки на землю в процессе эксплуатации. Возможность прогнозирования ремонта потенциально ненадежных линий обогрева в период летнего остановочного ремонта.
  • Контроль различных уровней температуры с помощью одного датчика: сигнализация падения температуры обогреваемого объекта ниже критической, температура включения нагревателя, максимальная температура обогреваемой технологической поверхности в процессе ведения технологического процесса при котором температура может превысить максимальное значение для данного типа саморегурирующегося нагревательного кабеля, что приведет к преждевременному выходу кабеля из строя.
  • Контроль минимального значения тока потребления нагревательной секции. Контроль данного значение позволяет потребителю оценить эффективность работы нагревательного кабеля (отдельные участки нагревательного кабеля могут иметь деградированную нагревательную матрицу) и выявить потенциально малоэффективные нагреватели и, соответственно, спрогнозировать проведение ремонтных работ и исключить лишние затраты на электроэнергию.
  • Контроль максимального значения тока потребления нагревательной секции. Возможность прогнозирования ремонта потенциально ненадежных линий обогрева в период летнего остановочного ремонта. Факт выхода из строя нагревательного кабеля в зимний период существенно усложнит проведение ремонтных работ и вызовет сбои в работе технологического оборудования.
  • Функция ограничения пускового тока саморегулирующегося кабеля, находящийся при низкой температуре. Данная функция позволит потребителю:
    • Снизить проектные требования к величине рабочего тока для автоматических защитных выключателей цепей электропитания каналов нагрева и, соответственно стоимость, данных материалов. К примеру, стоимость автоматического защитного выключателя на 40 Ампер практически на 40% процентов выше, чем стоимость аналогичного выключателя на 20 Ампер.
    • Увеличить максимальную длину нагревательной секции, тем самым сократить количество улектроустановочных изделий и стоимость монтажных работ.
    • Снизить проектные требования к величине рабочего тока для кабельных линий электропитания каналов нагрева и, соответственно стоимость, данных материалов и трудоемкость строительно-монтажных работ. К примеру, стоимость погонного метра кабеля (применяемого в качестве кабеля для электропитания нагревательной секции) сечением 6 квадратных миллиметров более чем на 40% выше, чем стоимость аналогичного кабеля сечением 4 квадратных миллиметра, а стоимость погонного метра кабеля сечением 10 квадратных миллиметров уже в два раза выше, чем сечением 4 квадратных миллиметра. Учитывая значительное количество кабельных линий электропитания, применяемых в каждом проекте системы электрообогрева суммарная экономия на кабельной продукции и ее монтаже может составить весьма внушительную сумму.
    • Снизить пиковые токовые нагрузки на энергосистему предприятия.
  • Функция пропорционального регулирования температуры обогреваемой поверхности. Данная функция позволяет минимизировать число циклов включение/выключения питания нагревательной секции и тем самым продлить срок службы нагревательной матрицы саморегулирующегося греющего кабеля.
  • Функция мониторинга состояния кабельных нагревательных линий временно выведенных из эксплуатации или отключенных на летний период. Специализированные контроллеры обеспечивают автоматическое периодическое включение каждой нагревательной секции для контроля основных параметров. Потребител

Как сделать собственными силами для водопроводной системы греющий кабель?

Очень часто при низких температурах воздуха возникает такое неприятное последствие, как замерзание водопровода или канализации. Это может привести не только к прекращению подачи воды или слива стоков, но и к разрыву водопровода или канализации.

Для решения этой проблемы достаточно установить греющий кабель внутри трубы также нагревательный элемент может быть установлен и снаружи трубы, сделать все это можно своими руками. Нагревательный элемент может быть саморегулирующийся или резистивный.

Что собой представляет такая система и ее особенности?

Для того чтобы не допустить размораживания водопровода используется специальный греющий кабель. Принцип работы данной системы основан на том, что через греющий кабель проходит электричество, за счет чего он нагревается и не допускает промерзание водопровода до отрицательной температуры.

При совершении выбора такого оборудования, надо обращать внимание на его технические характеристики, а именно на удельное тепловыделение, нагревательный элемент может быть резистивный или саморегулирующийся.

Этот показатель измеряется в Вт/м, он указывает на то, какую мощность имеет греющий элемент на единицу его длины. Подключение и установка указанного элемента может быть выполнена своими руками. В зависимости от нужд потребителя, он может подключить греющий кабель длиной несколько десятков сантиметров или несколько сотен метров.

Греющий кабель состоит из следующих элементов:

  • главным элементом является внутренняя жила, для ее изготовления используют материал, что имеет высокое сопротивление;
  • оболочка жилы состоит из экрана, что выполнен из алюминия или медной сетки и изолирующего материала;
  • общая оболочка, что обеспечивает защиту всех элементов.

Если вы решите не делать греющий кабель своими руками, а приобрести уже готовый, то стоит знать, что одножильный провод не имеет защиты от электромагнитного излучения, а у двух- и трёхжильных кабелей она есть. Также у двух- и трёхжильных дополнительно защищена токопроводящая жила, нагревательный элемент может быть резистивный или саморегулирующийся.

Резистивный

Резистивный греющий кабель прокладывается по всей длине водопровода внутри его или снаружи. Принцип его работы: на трубу устанавливают термодатчики, при достижении температуры до заданного предела, они включают систему в работу и она начинает подогреваться.

Как только температура достигнет заданного уровня, происходит автоматическое прекращение обогрева. Недостатком его работы является то, что он равномерно нагревается по всей своей длине и если не контролировать нагрев, то такой греющий элемент может просто перегореть.

Чтобы он работал более эффективно, надо использовать дополнительное утепление водопровода, для это подойдет минеральная вата или другой утеплитель.

В зависимости от требуемой мощности, такой греющий кабель может быть уложен несколькими способами: по спирали, волнами, одной или несколькими линиями. Укладку можно провести своими руками и делать это надо без натяжения. Если вы его устанавливаете снаружи водопровода, то для улучшения контакта нагревательного элемента и трубы, рекомендуется его обмотать алюминиевой фольгой.

Саморегулирующийся

Саморегулирующий греющий кабель имеет более высокие технические и эксплуатационные характеристики и применяется не только на водопроводах, но и в других системах, например для того, чтобы на зданиях не появлялись сосульки.

Саморегулирующий провод состоит из двух проводников, что покрыты полимером, при изменении температуры, они меняют свое сопротивление.

Вам осталось только подключить саморегулирующийся кабель и как только температура начнет снижаться, его сопротивление будет возрастать и соответственно увеличится температура нагрева.

Его особенностью является то, что в разных его точках, в зависимости от окружающей температуры, сопротивление может быть разным, и поэтому по-разному будет происходить и нагрев водопровода или другой системы.

Важно то, что саморегулирующий провод хорошо изолирован, что делает его не только высокоэффективным, но и безопасным.

Монтаж легко выполняется своими руками, удобно и то, что его можно резать на куски, при этом его технические характеристики не изменяются.

Стоимость такой продукции достаточно высокая, но если у вас есть технические навыки, то можно сделать самодельный греющий кабель.

Как утверждают народные мастера, для этих целей хорошо подходит силовой телефонный кабель, он используется для организации полевой связи и маркируется – П-274М.

Устройство телефонного кабеля П274

Преимуществами такого кабеля является то, что он имеет надежную изоляцию, высокую жесткость, поэтому он может использоваться как снаружи, так и внутри водопровода.

Недостатком является то, что он не может саморегулироваться, в нем нет пищевой изоляции, но для периодического использования и если его проложить не внутри, а снаружи водопровода, то это эффективное и доступное решение.

Чтобы не обнажать жилы на конце такого провода, надо их развести, потом полученный одинарный провод складывают пополам и снова свивают. Для сооружения герметичного захода провода, можно использовать фланец от гибкой трубы для подвода воды.

Особое внимание необходимо уделить герметизации ввода, поэтому после того, как в штуцер продели провод, его заливают эпоксидкой и затягивают соединение гайкой.

Если вы планируете установить такой греющий элемент снаружи, то расплетать его не надо, а соединять надо в противоположном конце участка, что будет обогреваться. Во время крепления самодельного кабеля снаружи водопровода, его надо плотно обмотать алюминиевой фольгой и скотчем, а сверху все утеплить.

Используя такой самодельный нагревающий элемент, вы можете утеплить не только водопровод, но и канализацию, надо учитывать, что сила тока, что будет пропускаться через провод, не должна быть больше 9А.

Схема спиральной укладки

Монтаж по спирали является более затратным, так как требует наличие провода большой длины, но обеспечивает его равномерный и эффективный прогрев.

При установке резистивного самодельного или приобретенного оборудования, нельзя допускать, чтобы он пересекался, так как это приводит к его перегреву и выходу из строя, саморегулирующегося кабеля это не касается.

Советы: Если в доме имеется подвальное помещение, советуем ознакомиться с принципами его гидроизоляции, детальней здесь: strojkarkas.com/uteplenie/vnutrennyaya-gidroizolyaciya-podvala.html.

Для дополнительной защиты не только фундамента, но и труб в земле, советуем позаботиться о водосточной системы крыши.

Рекомендации специалистов

Все монтажные работы надо проводить до того, как система будет подключена к питанию. Продумайте места установки присоединительных коробок, они должны находиться в удобном и легкодоступном месте. После монтажа надо проверить правильность всех соединений.

Для того чтобы система эффективно работала, надо обеспечить чтобы ее включение и выключение выполнялось тогда, когда это необходимо. Для того чтобы этого добиться, используются термодатчики, они и осуществляют регулировку увеличения и отключения системы обогрева водопровода.

Автоматическая регуляция обычно выполняется при помощи реле. Чтобы было наглядно видно подключение, рекомендуется использовать цветовой индикатор, так вы сможете дополнительно контролировать систему обогрева.

Как видите, для того чтобы обезопасить ваш водопровод или канализацию от промерзания, есть достаточно простой и доступный способ. Саморегулирующийся или резистивный Греющий кабель вы можете приобрести в магазине или сделать его своими руками.

Смотрите видео по монтажным работам:

Саморегулирующий греющий кабель

Главная > Электропроводка > Саморегулирующий греющий кабель

В последнее время большой популярностью пользуются системы кабельного обогрева, которые обустраиваются в различных зданиях и сооружениях. Саморегулирующий греющий кабель необходим для решения задачи обогрева трубопровода, пола или кровли. Применяя его, легко реализуются интересные архитектурные решения, а обустройство помещения становится простой задачей. В статье рассмотрим, как работает и какие особенности имеет саморегулирующийся нагревательный кабель.

Как выглядит провод

Особенности кабеля

Главным качеством нагревательного кабеля является его гибкость, позволяющая укладывать его практически в любых местах, эффективно и равномерно создавая обогрев. Имеются и другие положительные моменты его использования:

  • Если правильно провести расчет и монтаж элемента, он будет долго и надежно функционировать;
  • Универсальная проводка. С помощью саморегулирующегося кабеля обогреваются уличные и подземные трубопроводы, создается популярная система «теплый пол», обогревается кровля и многое другое;
  • Экологичность. Обогрев с использованием проводки является безопасным для окружающей среды;
  • Провод легко устанавливается и не вызывает сложностей в процессе работы.

На данный момент производством самрег-кабелей занимаются многие компании. Выбор правильного элемента несложный, так как работают они по единому принципу. Все что нужно – уточнить, какими характеристиками обладает проводка.

Изделие бывает нескольких видов

Важно! Саморегулирующийся нагревательный кабель греется в результате того, что по нему проходит электрический ток. Основной его характеристикой является удельное тепловыделение.

Конструкция саморегулирующихся проводов следующая:

  • Жилы из меди. Сплав имеет высокое электрическое сопротивление, от которого зависит показатель удельного тепловыделения;
  • Саморегулирующаяся матрица полупроводящего образца;
  • Наличие внутренней изоляции, для исполнения которой применяют полиэстер;
  • Луженая медная проволока в качестве оплетки;
  • Полиолефин применяется для наружной изоляции, позволяет обеспечить защиту кабеля от внешних воздействий.

Саморегулируемый кабель в своем составе содержит от одной до нескольких жил, каждая покрыта защитной оболочкой. Наиболее простые и дешевые – те элементы, которые содержат одну жилу, но они чаще всего выходят из строя, так как подвержены стороннему электромагнитному излучению. Чтобы была обеспечена защита от наводок, производители предусмотрели защитный экран из фольги. Исходя из этого, элементы бывают экранированными и неэкранированными. Первые являются более дорогостоящими, так как изготавливаются по сложной технологии.

Кабель саморегулирующийся – универсальная проводка, так как с ее помощью доступен обогрев кровли, систем для подачи воды, трубопроводов и различных емкостей с жидкостью. У него имеется ключевая особенность –способность самостоятельно регулировать мощность и интенсивность подачи тепла. К примеру, если температура опустится ниже указанного показателя, провод начнет греться без сторонней помощи.

Принцип действия такой проводки несложный и сводится к тому, что у проводника есть свойство уменьшать или увеличивать силу тока (зависит от сопротивления). Если увеличить сопротивление, то сила тока уменьшится, в результате чего снизится и мощность. Теперь рассмотрим, как все функционирует при охлаждении. Из-за падения сопротивления увеличивается сила тока, и провод начинает греться.

Саморегулируемые модели имеют следующее преимущество – их работа «зональна». Одним словом, проводка способна самостоятельно распределить «рабочую силу», то есть провод тщательно прогревает там, где остыло и поддерживает оптимальный градус в областях, где сильный нагрев не нужен.

Обратите внимание! Данный вид проводки функционирует в постоянном режиме, что очень удобно в холодное время года. Но, когда наступают оттепели по весне, держать его во включенном состоянии нерационально.

На заметку. Для полной автоматизации оборудования рекомендуется, чтобы система была оборудована термостатом, «привязанным» к температуре на улице.

Особенности теплоизоляции кабеля

Бывают различные типы проводки, используемые для той или иной цели. Независимо от этого, кабелям требуется утепление. Тепловую изоляцию следует устанавливать не только поверх самой системы, но и на водопроводные трубы. То есть водопроводы с греющим кабелем должны быть размещены в своеобразном герметичном «коконе», чтобы обогрев не шел во все стороны.

Защитный слой необходим для надежной эксплуатации

Надежный и эффективный утеплитель – пенополистирол и вспененный полиэтилен. Данным материалам не страшна влага, кроме того, они способны создать защитную амортизацию для труб. Несмотря на это, им требуется дополнительная защита, поэтому нередко задействуется конструкция «труба в трубе».

Обратите внимание! Теплоизоляционный слой имеет различную толщину, что зависит от внешних факторов. К примеру, если установка осуществляется в грунт, то достаточно изоляционного слоя толщиной от 20 до 30 мм. В случае с надземным исполнением потребуется толщина как минимум в 50 мм.

Положительные качества

Кабель греющий и одновременно саморегулируемый имеет следующие преимущества, благодаря которым он получил широкое распространение:

  • Способен автоматически поддерживать необходимую температуру в системе;
  • Не теряя характеристик, отрезается проводка требуемой длины;
  • Даже если имеет место самопересечение элементов, они не перегреются и не перегорят;
  • Благодаря плоской конструкции, обеспечивается надежный тепловой контакт;
  • За счет фторполимерной оболочки нередко монтируется в тех местах, где имеют место коррозийные химические растворы и пары;
  • Может применяться в зонах с повышенной взрывоопасностью;
  • Питание подключается с одного конца;
  • Никогда не перегорает и не греет выше +65 градусов Цельсия.

Благодаря вышеописанным положительным свойствам, самрег-кабели находят широкое применение в самых различных областях человеческой деятельности. Это может быть промышленная защита от промерзаний, обогрев кровельных элементов, трубопровода. Кроме того, с его помощью обогревается система «теплый пол», как и любая другая дорожка: кабель попросту заливается в бетон или укладывается в грунт, в результате чего получается обогреваемая дорожка на участке.

Греющие кабели широко распространены, благодаря своим уникальным свойствам, позволяющим использовать их в самых разнообразных областях. Это как промышленные, так и жилые объекты. Все, что требуется для эффективного пользования, – определиться с техническими характеристиками проводки и грамотно ее смонтировать с учетом всех требований и норм.

Видео

Оцените статью
Добавить комментарий